tensorflow的基本用法(九)——定义卷积神经网络训练MNIST

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是使用tensorflow定义卷积神经网络来训练MNIST数据集。定义的神经网络结构为两个卷积层+两个连接层,每个卷积层包括卷积层、ReLU层和Pooling层。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python
# _*_ coding: utf-8 _*_

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 定义神经网络模型的评估部分
def compute_accuracy(test_xs, test_ys):
# 使用全局变量prediction
global prediction
# 获得预测值y_pre
y_pre = sess.run(prediction, feed_dict = { xs: test_xs, keep_prob: 1})
# 判断预测值y和真实值y_中最大数的索引是否一致,y_pre的值为1-10概率
correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(test_ys, 1))
# 定义准确率的计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 计算准确率
result = sess.run(accuracy)
return result

# 下载mnist数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 权重参数初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)

# 偏置参数初始化
def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial)

# 定义卷积层
def conv2d(x, W):
# stride的四个参数:[batch, height, width, channels], [batch_size, image_rows, image_cols, number_of_colors]
# height, width就是图像的高度和宽度,batch和channels在卷积层中通常设为1
return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')


# 输入输出数据的placeholder
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])
# dropout的比例
keep_prob = tf.placeholder(tf.float32)

# 对数据进行重新排列,形成图像
x_image = tf.reshape(xs, [-1, 28, 28, 1])

print x_image.shape

# 卷积层一
# patch为5*5,in_size为1,即图像的厚度,如果是彩色,则为3,32是out_size,输出的大小
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# ReLU操作,输出大小为28*28*32
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling操作,输出大小为14*14*32
h_pool1 = max_pool_2x2(h_conv1)

# 卷积层二
# patch为5*5,in_size为32,即图像的厚度,64是out_size,输出的大小
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# ReLU操作,输出大小为14*14*64
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Pooling操作,输出大小为7*7*64
h_pool2 = max_pool_2x2(h_conv2)

# 全连接层一
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
# 输入数据变换
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 进行全连接操作
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 防止过拟合,dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


# 全连接层二
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# 预测
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 计算loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
# 神经网络训练
train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)

# 定义Session
sess = tf.Session()
# 根据tensorflow版本选择初始化函数
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
# 执行初始化
sess.run(init)

# 进行训练迭代
for i in range(1000):
# 取出mnist数据集中的100个数据
batch_xs, batch_ys = mnist.train.next_batch(100)
# 执行训练过程并传入真实数据
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
if i % 100 == 0:
print compute_accuracy(mnist.test.images, mnist.test.labels)

执行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
$ python practice4.py
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
0.0823
0.875
0.9243
0.9427
0.9502
0.9573
0.9595
0.9623
0.963
0.9687

参考资料

  1. https://www.youtube.com/user/MorvanZhou
如果有收获,可以请我喝杯咖啡!