Caffe源码解析(一)——caffe.proto

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

caffe.proto是caffe数据结构定义的主要文件,本文主要是在caffe.proto代码的基础上加上了部分中文注释,其中的内容与caffe的prototxt文件中的结构相对应。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
// syntax用来指定protobuf的版本
syntax = "proto2";

// package可以看作C++中的namespace,与Caffe C++代码中的namespace caffe对应
// package用来避免名称冲突
package caffe;


// 在消息定义中,每个字段都有唯一的一个数字标识符。这些标识符是用来在消息的二进制格式中识别各个字段的,一旦开始使用就不能够再改变。
// 注:[1,15]之内的标识号在编码的时候会占用一个字节。[16,2047]之内的标识号则占用2个字节。所以应该为那些频繁出现的消息元素保留 [1,15]之内的标识号。
// required:一个格式良好的消息一定要含有一个这种字段,表示该值是必须要设置的。
// optional:消息格式中该字段可以有0个或1个值(不超过1个)。
// repeated:在一个格式良好的消息中,这种字段可以重复任意多次(包括0次)。重复的值的顺序会被保留,表示该值可以重复,相当于Java中的List。


// Specifies the shape (dimensions) of a Blob.
// 指定Blob的shape,4-D shape
message BlobShape {
//数据块形状定义为Num * Channel * Height * Wight, 原因在于caffe基于容器的多维嵌套来实现高维数据的封装, 即vector。
repeated int64 dim = 1 [packed = true];
}


// Blob数据块,包括Blob shape,数据和微分
message BlobProto {
// Blob的shape, 即numpy中的shape
optional BlobShape shape = 7;
// Blob的数据部分
repeated float data = 5 [packed = true];
// Blob的微分部分
repeated float diff = 6 [packed = true];
// Blob中的数据部分(double类型)
repeated double double_data = 8 [packed = true];
// Blob的微分部分(double类型)
repeated double double_diff = 9 [packed = true];

// 4D dimensions -- deprecated. Use "shape" instead.
// Blob的4个维度,已被Blob shape代替
// Blob中数据的个数(例如卷积核的个数)
optional int32 num = 1 [default = 0];
// Blob中数据的通道数
optional int32 channels = 2 [default = 0];
// Blob中数据的高度
optional int32 height = 3 [default = 0];
// Blob中数据的宽度
optional int32 width = 4 [default = 0];
}


// The BlobProtoVector is simply a way to pass multiple blobproto instances
// around.
// BlobProtoVector, 用来保存多个BlobProb对象的Vector
message BlobProtoVector {
repeated BlobProto blobs = 1;
}


//图像数据, channel-图像通道数, height-高度, width-宽度, data-图像像素数据, label-图像标签, float_data-图像浮点型数据(0-1之间), encoded-图像编码方式
message Datum {
// 图像的通道数
optional int32 channels = 1;
// 图像的高度
optional int32 height = 2;
// 图像的宽度
optional int32 width = 3;
// the actual image data, in bytes
// 实际的图像数据,以字节形式(uint8)表示
optional bytes data = 4;
// 图像对应的标签,必须为整形
optional int32 label = 5;
// Optionally, the datum could also hold float data.
// 可选表示,图像数据表示为float数据,即0-255归一化到0-1之间
repeated float float_data = 6;
// If true data contains an encoded image that need to be decoded
// encoded为true表示图像采用压缩表示,需要解码
optional bool encoded = 7 [default = false];
}


// Filler参数, filler主要对网络权重进行初始化
// Filler类型分为常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均匀分布初始化(uniform)、xavier初始化、msra初始化、双线性初始化(bilinear)
message FillerParameter {
// The filler type.
// Filler的类型
optional string type = 1 [default = 'constant'];
// 常量初始化的值
optional float value = 2 [default = 0]; // the value in constant filler
// 均匀分布初始化中的最小值
optional float min = 3 [default = 0]; // the min value in uniform filler
// 均匀分布初始化中的最大值
optional float max = 4 [default = 1]; // the max value in uniform filler
// 高斯分布初始化中的均值
optional float mean = 5 [default = 0]; // the mean value in Gaussian filler
// 高斯分布初始化中的标准差
optional float std = 6 [default = 1]; // the std value in Gaussian filler
// The expected number of non-zero output weights for a given input in
// Gaussian filler -- the default -1 means don't perform sparsification.
// 在高斯分布初始化中给定输入及权重,期望输出非0值,默认值-1表示不进行稀疏化
optional int32 sparse = 7 [default = -1];
// Normalize the filler variance by fan_in, fan_out, or their average.
// Applies to 'xavier' and 'msra' fillers.
// 通过fan_in, fan_out或average来归一化filler方差,主要应用到'xavier'和'msra' filler中
enum VarianceNorm {
FAN_IN = 0;
FAN_OUT = 1;
AVERAGE = 2;
}
// 定义filler方差归一化,默认为FAN_IN
optional VarianceNorm variance_norm = 8 [default = FAN_IN];
}


//神经网络参数
message NetParameter {
// 神经网络名字
optional string name = 1; // consider giving the network a name

// DEPRECATED. See InputParameter. The input blobs to the network.
// 已废弃。网络的输入部分,具体请看InputParameter。
repeated string input = 3;

// DEPRECATED. See InputParameter. The shape of the input blobs.
// 已废弃。输入blob的shape,具体请看InputParameter。
repeated BlobShape input_shape = 8;

// 4D input dimensions -- deprecated. Use "input_shape" instead.
// If specified, for each input blob there should be four
// values specifying the num, channels, height and width of the input blob.
// Thus, there should be a total of (4 * #input) numbers.
// 已废弃。用input_shape代替。
repeated int32 input_dim = 4;

// Whether the network will force every layer to carry out backward operation.
// If set False, then whether to carry out backward is determined
// automatically according to the net structure and learning rates.
// 网络中是否每一层都执行反向传播的标志,如果设为false,反向传播会根据网络结构和学习率自动进行。
optional bool force_backward = 5 [default = false];

// The current "state" of the network, including the phase, level, and stage.
// Some layers may be included/excluded depending on this state and the states
// specified in the layers' include and exclude fields.
// 网络的当前状态,包括phase, level和stage,(phase应该是对应prototxt文件中的TRAIN,TEST)
// 某些层是否included/excluded依赖于层中include,exclue字段指定的state。
optional NetState state = 6;

// Print debugging information about results while running Net::Forward,
// Net::Backward, and Net::Update.
// 在执行Net::Forward,Net::Backward, Net::Update时是否打印调试信息。
optional bool debug_info = 7 [default = false];

// The layers that make up the net. Each of their configurations, including
// connectivity and behavior, is specified as a LayerParameter.
// 构成网络的layer,每一个layer的配置,包括连接性和行为都在LayerParameter中指定。
repeated LayerParameter layer = 100; // ID 100 so layers are printed last.

// DEPRECATED: use 'layer' instead.
// 已废弃,用layer代替。
repeated V1LayerParameter layers = 2;
}


// NOTE
// Update the next available ID when you add a new SolverParameter field.
// 注意:当你添加一个新的SolverParameter字段时,要更新下一个可获取的ID
// SolverParameter next available ID: 41 (last added: type)
// Solver参数
message SolverParameter {
//////////////////////////////////////////////////////////////////////////////
// Specifying the train and test networks
//
// Exactly one train net must be specified using one of the following fields:
// train_net_param, train_net, net_param, net
// One or more test nets may be specified using any of the following fields:
// test_net_param, test_net, net_param, net
// If more than one test net field is specified (e.g., both net and
// test_net are specified), they will be evaluated in the field order given
// above: (1) test_net_param, (2) test_net, (3) net_param/net.
// A test_iter must be specified for each test_net.
// A test_level and/or a test_stage may also be specified for each test_net.
//////////////////////////////////////////////////////////////////////////////

// Proto filename for the train net, possibly combined with one or more test nets.
// 训练网络的prototxt文件名,可能结合一个或多个测试网络
optional string net = 24;
// Inline train net param, possibly combined with one or more test nets.
// 内联训练网络参数,可能结合一个或多个测试网络
optional NetParameter net_param = 25;

// 训练网络的proto文件名
optional string train_net = 1; // Proto filename for the train net.
// 测试网络的proto文件名
repeated string test_net = 2; // Proto filenames for the test nets.
// 内联训练网络参数
optional NetParameter train_net_param = 21; // Inline train net params.
// 内联测试网络参数
repeated NetParameter test_net_param = 22; // Inline test net params.

// The states for the train/test nets. Must be unspecified or specified once per net.
// By default, all states will have solver = true;
// train_state will have phase = TRAIN,
// and all test_state's will have phase = TEST.
// Other defaults are set according to the NetState defaults.
// train/test网络的状态,必须不指定或每个网络指定一次
// 默认情况下,所有的状态都有solver = true,train_state的phase = TRAIN,其它默认情况根据NetState默认值设定。

// train网络的状态,必须不指定或每个网络指定一次
optional NetState train_state = 26;
// test网络的状态,必须不指定或每个网络指定一次
repeated NetState test_state = 27;

// The number of iterations for each test net.
// 每个测试网络的迭代次数,即测试数据的迭代次数,测试数据总数=测试迭代次数*测试数据的batch_size。
repeated int32 test_iter = 3;

// The number of iterations between two testing phases.
// 两次测试间隔的迭代次数,即训练数据迭代多少次进行一次测试。
optional int32 test_interval = 4 [default = 0];
// 测试数据的loss,默认情况下不计算
optional bool test_compute_loss = 19 [default = false];
// If true, run an initial test pass before the first iteration,
// ensuring memory availability and printing the starting value of the loss.
// 如果为true,在第一次迭代之前进行一次初始测试,从而确保内存可用性并输出初始损失值。
optional bool test_initialization = 32 [default = true];
// 基本学习率
optional float base_lr = 5; // The base learning rate
// the number of iterations between displaying info. If display = 0, no info will be displayed.
// 执行多少次迭代显示一次信息,如果display = 0,不输出信息。
optional int32 display = 6;
// Display the loss averaged over the last average_loss iterations
// 输出的平均损失是之前多少次迭代的平均损失。
optional int32 average_loss = 33 [default = 1];
// 训练的最大迭代次数
optional int32 max_iter = 7; // the maximum number of iterations
// accumulate gradients over `iter_size` x `batch_size` instances
// 累积`iter_size` x `batch_size`个实例的梯度
optional int32 iter_size = 36 [default = 1];

// The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.

// 学习率的变化策略
optional string lr_policy = 8;
// 学习率的计算参数
optional float gamma = 9; // The parameter to compute the learning rate.
// 学习率的计算参数
optional float power = 10; // The parameter to compute the learning rate.
// 动量参数
optional float momentum = 11; // The momentum value.
// 权重衰减,权重衰减主要影响神经网络的正则项,具体可参考Caffe文档
optional float weight_decay = 12; // The weight decay.
// regularization types supported: L1 and L2, controlled by weight_decay
// 正则化类型支持L1和L2,受weight_decay控制。
optional string regularization_type = 29 [default = "L2"];
// the stepsize for learning rate policy "step"
// 学习率方案为step时的参数
optional int32 stepsize = 13;
// the stepsize for learning rate policy "multistep"
// 学习率方案为multistep时的参数
repeated int32 stepvalue = 34;

// Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,
// whenever their actual L2 norm is larger.
// 设置clip_gradients >= 0可以削减L2范数的梯度,当真实L2范数的梯度大于clip_gradients,将L2范数的梯度设为clip_gradients
optional float clip_gradients = 35 [default = -1];
// snapshot的间隔,即迭代多少次保存一次snapshot
optional int32 snapshot = 14 [default = 0]; // The snapshot interval
// snapshot的前缀
optional string snapshot_prefix = 15; // The prefix for the snapshot.
// whether to snapshot diff in the results or not. Snapshotting diff will help
// debugging but the final protocol buffer size will be much larger.
// 是否在结果中保存snapshot的差分,snapshot diff有助于调试,但snapshot的文件会更大。
optional bool snapshot_diff = 16 [default = false];
// snapshot的保存格式(hdf5,binaryproto)。
enum SnapshotFormat {
HDF5 = 0;
BINARYPROTO = 1;
}
// snapshot默认保存为BINARYPROTO。
optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];
// the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.
// 求解神经网络的方式,0 CPU, 1 GPU。默认使用GPU
enum SolverMode {
CPU = 0;
GPU = 1;
}
// 求解神经网络的模式,0 CPU, 1 GPU。默认使用GPU
optional SolverMode solver_mode = 17 [default = GPU];
// the device_id will that be used in GPU mode. Use device_id = 0 in default.
// device_id是GPU模式下GPU的ID。
optional int32 device_id = 18 [default = 0];
// If non-negative, the seed with which the Solver will initialize the Caffe
// random number generator -- useful for reproducible results. Otherwise,
// (and by default) initialize using a seed derived from the system clock.
// 如果是非负值,seed用来初始化Caffe的随机数生成器,对于再见结果是很有用的,默认情况下,seed的是从系统时钟获取。
optional int64 random_seed = 20 [default = -1];

// type of the solver
// 神经网络求解的类型, 默认为SGD
optional string type = 40 [default = "SGD"];

// numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
// RMSProp, AdaGrad, AdaDelta, Adam求解类型的参数
optional float delta = 31 [default = 1e-8];
// parameters for the Adam solver
// Adam求解类型的参数
optional float momentum2 = 39 [default = 0.999];

// RMSProp decay value
// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
// RMSProp类型的衰减值
optional float rms_decay = 38 [default = 0.99];

// If true, print information about the state of the net that may help with
// debugging learning problems.
// 如果设为true,会输出网络的状态信息,有助于调试
optional bool debug_info = 23 [default = false];

// If false, don't save a snapshot after training finishes.
// 如果设为false,不保存训练结束的snapshot。
optional bool snapshot_after_train = 28 [default = true];

// DEPRECATED: old solver enum types, use string instead
// 已废弃,使用string代替
enum SolverType {
SGD = 0;
NESTEROV = 1;
ADAGRAD = 2;
RMSPROP = 3;
ADADELTA = 4;
ADAM = 5;
}
// DEPRECATED: use type instead of solver_type
// 已废弃:使用type代替
optional SolverType solver_type = 30 [default = SGD];
}

// A message that stores the solver snapshots
// 保存solver snapshots
message SolverState {
// 当前的迭代次数
optional int32 iter = 1; // The current iteration
// 保存学习到的网络
optional string learned_net = 2; // The file that stores the learned net.
// sgd的求解历史
repeated BlobProto history = 3; // The history for sgd solvers
// 学习的当前step
optional int32 current_step = 4 [default = 0]; // The current step for learning rate
}

// 定义phase
enum Phase {
TRAIN = 0;
TEST = 1;
}

// 网络状态
message NetState {
// 属于哪个phase
optional Phase phase = 1 [default = TEST];
optional int32 level = 2 [default = 0];
repeated string stage = 3;
}

// 网络状态分类
message NetStateRule {
// Set phase to require the NetState have a particular phase (TRAIN or TEST)
// to meet this rule.
// 设置phase
optional Phase phase = 1;

// Set the minimum and/or maximum levels in which the layer should be used.
// Leave undefined to meet the rule regardless of level.
// 设置layer的level
optional int32 min_level = 2;
optional int32 max_level = 3;

// Customizable sets of stages to include or exclude.
// The net must have ALL of the specified stages and NONE of the specified
// "not_stage"s to meet the rule.
// (Use multiple NetStateRules to specify conjunctions of stages.)
// 可定制的stage集合
repeated string stage = 4;
repeated string not_stage = 5;
}

// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
// 指定训练参数及名称以及权重共享的其它设置
message ParamSpec {
// The names of the parameter blobs -- useful for sharing parameters among
// layers, but never required otherwise. To share a parameter between two
// layers, give it a (non-empty) name.
// 两个layer之间进行参数共享的blob名字
optional string name = 1;

// Whether to require shared weights to have the same shape, or just the same
// count -- defaults to STRICT if unspecified.
// 参数共享时是否需要具有相同的shape,默认情况下需要有相同的shape
optional DimCheckMode share_mode = 2;
// 参数共享时的维度检查
enum DimCheckMode {
// STRICT (default) requires that num, channels, height, width each match.
STRICT = 0;
// PERMISSIVE requires only the count (num*channels*height*width) to match.
PERMISSIVE = 1;
}

// The multiplier on the global learning rate for this parameter.
// 学习率参数, learning rate = base_lr * lr_mult
optional float lr_mult = 3 [default = 1.0];

// The multiplier on the global weight decay for this parameter.
// 权重衰减参数, weight = weight_decay * decay_mult
optional float decay_mult = 4 [default = 1.0];
}

// NOTE
// Update the next available ID when you add a new LayerParameter field.
// LayerParameter next available layer-specific ID: 147 (last added: recurrent_param)
// 注意:当你添加一个新的LayerParameter字段时,要更新下一个可获取的ID
message LayerParameter {
// layer名称
optional string name = 1; // the layer name
// layer类型
optional string type = 2; // the layer type
// layer的输入
repeated string bottom = 3; // the name of each bottom blob
// layer的输出
repeated string top = 4; // the name of each top blob

// The train / test phase for computation.
// layer用在train/test phase
optional Phase phase = 10;

// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
// layer对最终的loss损失值的贡献率
repeated float loss_weight = 5;

// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
// 指定训练参数
repeated ParamSpec param = 6;

// The blobs containing the numeric parameters of the layer.
// layer的blobs
repeated BlobProto blobs = 7;

// Specifies whether to backpropagate to each bottom. If unspecified,
// Caffe will automatically infer whether each input needs backpropagation
// to compute parameter gradients. If set to true for some inputs,
// backpropagation to those inputs is forced; if set false for some inputs,
// backpropagation to those inputs is skipped.
//
// The size must be either 0 or equal to the number of bottoms.
// 指定反向传播是否传播到每一个bottom,如果不指定,caffe会自动检查推断是否每一个输入都需要反向传播来计算梯度。如果一些输入设为true,
// 则这些layer强制进行反向传播,如果设为false,这些layer将跳过反向传播。
repeated bool propagate_down = 11;

// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
// 控制layer included/excluded
repeated NetStateRule include = 8;
repeated NetStateRule exclude = 9;

// Parameters for data pre-processing.
// 数据预处理参数
optional TransformationParameter transform_param = 100;

// Parameters shared by loss layers.
// loss layer的参数共享
optional LossParameter loss_param = 101;

// Layer type-specific parameters.
//
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.

// 特定layer的参数
optional AccuracyParameter accuracy_param = 102;
optional ArgMaxParameter argmax_param = 103;
optional BatchNormParameter batch_norm_param = 139;
optional BiasParameter bias_param = 141;
optional ConcatParameter concat_param = 104;
optional ContrastiveLossParameter contrastive_loss_param = 105;
optional ConvolutionParameter convolution_param = 106;
optional CropParameter crop_param = 144;
optional DataParameter data_param = 107;
optional DropoutParameter dropout_param = 108;
optional DummyDataParameter dummy_data_param = 109;
optional EltwiseParameter eltwise_param = 110;
optional ELUParameter elu_param = 140;
optional EmbedParameter embed_param = 137;
optional ExpParameter exp_param = 111;
optional FlattenParameter flatten_param = 135;
optional HDF5DataParameter hdf5_data_param = 112;
optional HDF5OutputParameter hdf5_output_param = 113;
optional HingeLossParameter hinge_loss_param = 114;
optional ImageDataParameter image_data_param = 115;
optional InfogainLossParameter infogain_loss_param = 116;
optional InnerProductParameter inner_product_param = 117;
optional InputParameter input_param = 143;
optional LogParameter log_param = 134;
optional LRNParameter lrn_param = 118;
optional MemoryDataParameter memory_data_param = 119;
optional MVNParameter mvn_param = 120;
optional ParameterParameter parameter_param = 145;
optional PoolingParameter pooling_param = 121;
optional PowerParameter power_param = 122;
optional PReLUParameter prelu_param = 131;
optional PythonParameter python_param = 130;
optional RecurrentParameter recurrent_param = 146;
optional ReductionParameter reduction_param = 136;
optional ReLUParameter relu_param = 123;
optional ReshapeParameter reshape_param = 133;
optional ScaleParameter scale_param = 142;
optional SigmoidParameter sigmoid_param = 124;
optional SoftmaxParameter softmax_param = 125;
optional SPPParameter spp_param = 132;
optional SliceParameter slice_param = 126;
optional TanHParameter tanh_param = 127;
optional ThresholdParameter threshold_param = 128;
optional TileParameter tile_param = 138;
optional WindowDataParameter window_data_param = 129;
}

// Message that stores parameters used to apply transformation to the data layer's data
// 用来进行数据层(图像)变换的参数
message TransformationParameter {
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
// 像素归一化,归一化之前会减去均值
optional float scale = 1 [default = 1];
// Specify if we want to randomly mirror data.
// 图像进行随机mirror操作
optional bool mirror = 2 [default = false];
// Specify if we would like to randomly crop an image.
// 图像随机crop操作
optional uint32 crop_size = 3 [default = 0];
// mean_file and mean_value cannot be specified at the same time
// 图像的均值文件
optional string mean_file = 4;
// if specified can be repeated once (would subtract it from all the channels)
// or can be repeated the same number of times as channels
// (would subtract them from the corresponding channel)
// 图像的均值,手动指定,通常是三个
repeated float mean_value = 5;
// Force the decoded image to have 3 color channels.
// 强制图像必须有三个颜色通道
optional bool force_color = 6 [default = false];
// Force the decoded image to have 1 color channels.
// 强制图像为灰度图像
optional bool force_gray = 7 [default = false];
}

// Message that stores parameters shared by loss layers
// loss层参数
message LossParameter {
// If specified, ignore instances with the given label.
// 如果指定,则label等于ignore_label的样本将不参与Loss计算,并且反向传播时梯度直接置0。
optional int32 ignore_label = 1;
// How to normalize the loss for loss layers that aggregate across batches,
// spatial dimensions, or other dimensions. Currently only implemented in
// SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
// 指定loss归一化的方式
enum NormalizationMode {
// Divide by the number of examples in the batch times spatial dimensions.
// Outputs that receive the ignore label will NOT be ignored in computing
// the normalization factor.
// 所有样本都参与计算,包括ignore label
FULL = 0;
// Divide by the total number of output locations that do not take the
// ignore_label. If ignore_label is not set, this behaves like FULL.
// 所有样本都参与计算,不包括ignore label
VALID = 1;
// Divide by the batch size.
// 除以给定的batch size。
BATCH_SIZE = 2;
// Do not normalize the loss.
// 不归一化loss
NONE = 3;
}
// For historical reasons, the default normalization for
// SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
// loss归一化方式
optional NormalizationMode normalization = 3 [default = VALID];
// Deprecated. Ignored if normalization is specified. If normalization
// is not specified, then setting this to false will be equivalent to
// normalization = BATCH_SIZE to be consistent with previous behavior.
// 已废弃。Loss会除以参与计算的样本总数;否则Loss等于直接求和
optional bool normalize = 2;
}

// Messages that store parameters used by individual layer types follow, in
// alphabetical order.
// accuracy层参数
message AccuracyParameter {
// When computing accuracy, count as correct by comparing the true label to
// the top k scoring classes. By default, only compare to the top scoring
// class (i.e. argmax).
// 计算前top-k的准确率,默认计算top-1准确率
optional uint32 top_k = 1 [default = 1];

// The "label" axis of the prediction blob, whose argmax corresponds to the
// predicted label -- may be negative to index from the end (e.g., -1 for the
// last axis). For example, if axis == 1 and the predictions are
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth
// labels with integer values in {0, 1, ..., C-1}.
// 指定在哪个维度上计算label
optional int32 axis = 2 [default = 1];

// If specified, ignore instances with the given label.
// 如果指定,则忽略给定标签的实例
optional int32 ignore_label = 3;
}


// 标签最大化参数,标签最大化即确定概率最大的label
message ArgMaxParameter {
// If true produce pairs (argmax, maxval)
// 如果为真,则生成(argmax, maxval)
optional bool out_max_val = 1 [default = false];
// 类别的top-k
optional uint32 top_k = 2 [default = 1];
// The axis along which to maximise -- may be negative to index from the
// end (e.g., -1 for the last axis).
// By default ArgMaxLayer maximizes over the flattened trailing dimensions
// for each index of the first / num dimension.
// 根据axis进行标签最大化
optional int32 axis = 3;
}

// 参数拼接,在deconv的prototxt文件中见过
message ConcatParameter {
// The axis along which to concatenate -- may be negative to index from the
// end (e.g., -1 for the last axis). Other axes must have the
// same dimension for all the bottom blobs.
// By default, ConcatLayer concatenates blobs along the "channels" axis (1).
// 参数拼接时的维度,按axis进行拼接
optional int32 axis = 2 [default = 1];

// DEPRECATED: alias for "axis" -- does not support negative indexing.
// 已废弃。与axis一样。
optional uint32 concat_dim = 1 [default = 1];
}

// batch norm层的相关参数, batch norm layer通常配与scale layer一起使用,具体用法可参考Resnet结构
message BatchNormParameter {
// If false, accumulate global mean/variance values via a moving average. If
// true, use those accumulated values instead of computing mean/variance
// across the batch.
// 如果设为false,累计全部的mean/variance,如果为true,使用累计值代替batch上mean/variance的计算
// true是使用了caffe内部的均值和方差,false是使用了每个Batch里的数据的均值和方差
optional bool use_global_stats = 1;
// How much does the moving average decay each iteration?
// 每次迭代平均值衰减比例
optional float moving_average_fraction = 2 [default = .999];
// Small value to add to the variance estimate so that we don't divide by
// zero.
// variance估计时为了使除数不为0,需要加上eps
optional float eps = 3 [default = 1e-5];
}

// bias层参数,没找到实际的应用例子
message BiasParameter {
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar bias.
optional int32 axis = 1 [default = 1];

// (num_axes is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the bias
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to add a zero-axis Blob: a scalar.
optional int32 num_axes = 2 [default = 1];

// (filler is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer.)
// The initialization for the learned bias parameter.
// Default is the zero (0) initialization, resulting in the BiasLayer
// initially performing the identity operation.
optional FillerParameter filler = 3;
}

// 对比损失层,siamese network中使用了对比损失
message ContrastiveLossParameter {
// margin for dissimilar pair
// 不相似的样本对的距离保持在margin以上
optional float margin = 1 [default = 1.0];
// The first implementation of this cost did not exactly match the cost of
// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
// legacy_version = false (the default) uses (margin - d)^2 as proposed in the
// Hadsell paper. New models should probably use this version.
// legacy_version = true uses (margin - d^2). This is kept to support /
// reproduce existing models and results
// 第一版对比损失没有完全按论文写,如果为false,则按照论文原来的公式计算
optional bool legacy_version = 2 [default = false];
}

// 卷积层参数
message ConvolutionParameter {
// 输出数据的个数
optional uint32 num_output = 1; // The number of outputs for the layer
// 是否有偏置项
optional bool bias_term = 2 [default = true]; // whether to have bias terms

// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in all spatial dimensions, or once per spatial dimension.
// 卷积padding的大小
repeated uint32 pad = 3; // The padding size; defaults to 0
// 卷积核的大小
repeated uint32 kernel_size = 4; // The kernel size
// 卷积的步长
repeated uint32 stride = 6; // The stride; defaults to 1
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting
// holes. (Kernel dilation is sometimes referred to by its use in the
// algorithme à trous from Holschneider et al. 1987.)
// 卷积膨胀,在卷积的时候可以skip一定长度的像素
repeated uint32 dilation = 18; // The dilation; defaults to 1

// For 2D convolution only, the *_h and *_w versions may also be used to
// specify both spatial dimensions.
// padding, kernel, stride的宽度和高度
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optional uint32 kernel_h = 11; // The kernel height (2D only)
optional uint32 kernel_w = 12; // The kernel width (2D only)
optional uint32 stride_h = 13; // The stride height (2D only)
optional uint32 stride_w = 14; // The stride width (2D only)

// 来自于AlexNet论文
optional uint32 group = 5 [default = 1]; // The group size for group conv

// 权重初始化
optional FillerParameter weight_filler = 7; // The filler for the weight
// 偏置初始化
optional FillerParameter bias_filler = 8; // The filler for the bias
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 卷积的方式的选择,default是正常的卷积,caffe是矩阵乘法的卷积,cudnn是cuda库流并行式的卷积
optional Engine engine = 15 [default = DEFAULT];

// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
// 通道channel所在的维度
optional int32 axis = 16 [default = 1];

// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
// 如果输入数据维度等于2,则执行通用的ND卷积,否则正常执行卷积
optional bool force_nd_im2col = 17 [default = false];
}

// 图像裁剪参数
message CropParameter {
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop,
// and `axis` may be negative to index from the end (e.g., -1 for the last
// axis).
// axis是在哪个维度上进行裁剪,会裁剪轴2及之后的所有轴
optional int32 axis = 1 [default = 2];
// offset设置是每个维度进行裁剪时的偏移量
repeated uint32 offset = 2;
}

// 数据层参数
message DataParameter {
enum DB {
LEVELDB = 0;
LMDB = 1;
}
// Specify the data source.
// 设定数据源路径
optional string source = 1;
// Specify the batch size.
// 指定一次处理的图片数量
optional uint32 batch_size = 4;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
// DEPRECATED. Each solver accesses a different subset of the database.
// rand_skip跳过指定的数据点,避免异步的sgd从同一个数据点开始
optional uint32 rand_skip = 7 [default = 0];
// 使用的数据库类型,LMDB or LEVELDB
optional DB backend = 8 [default = LEVELDB];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
// 已废弃。图像归一化,在TransformationParameter中。
optional float scale = 2 [default = 1];
// 已废弃。均值文件,在TransformationParameter中。
optional string mean_file = 3;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
// 已废弃。图像裁剪,在TransformationParameter中。
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
// 已废弃。图像翻转,在TransformationParameter中。
optional bool mirror = 6 [default = false];
// Force the encoded image to have 3 color channels
// 强制图像数据有三个颜色通道
optional bool force_encoded_color = 9 [default = false];
// Prefetch queue (Number of batches to prefetch to host memory, increase if
// data access bandwidth varies).
// 预先拉取batch的数目
optional uint32 prefetch = 10 [default = 4];
}

// dropout层参数
message DropoutParameter {
// 为了避免过拟合,参数随机失活的比例
optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
}


// DummyDataLayer fills any number of arbitrarily shaped blobs with random
// (or constant) data generated by "Fillers" (see "message FillerParameter").
// DummyData层的参数
message DummyDataParameter {
// This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N
// shape fields, and 0, 1 or N data_fillers.
// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
// If 1 data_filler is specified, it is applied to all top blobs. If N are
// specified, the ith is applied to the ith top blob.
// blob数据的生成方式
repeated FillerParameter data_filler = 1;
// 数据的维度
repeated BlobShape shape = 6;

// 4D dimensions -- deprecated. Use "shape" instead.
// 已废弃。使用shape代替。
repeated uint32 num = 2;
repeated uint32 channels = 3;
repeated uint32 height = 4;
repeated uint32 width = 5;
}

//Eltwise层的参数
message EltwiseParameter {
// 操作的类型
enum EltwiseOp {
PROD = 0;
SUM = 1;
MAX = 2;
}
// 数据操作分三种:点乘,相加,取最大值
optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation
// SUM操作时各个blob对应的系数
repeated float coeff = 2; // blob-wise coefficient for SUM operation

// Whether to use an asymptotically slower (for >2 inputs) but stabler method
// of computing the gradient for the PROD operation. (No effect for SUM op.)
// 在进行PROD操作,即乘法时是否使用异步操作来计算梯度,更慢但更稳定。
optional bool stable_prod_grad = 3 [default = true];
}

// Message that stores parameters used by ELULayer
// ELU层的参数,具体看论文
message ELUParameter {
// Described in:
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optional float alpha = 1 [default = 1];
}

// Message that stores parameters used by EmbedLayer
// Embed层的参数,主要用于LSTM等翻译网络
message EmbedParameter {
// Embed层的输出
optional uint32 num_output = 1; // The number of outputs for the layer
// The input is given as integers to be interpreted as one-hot
// vector indices with dimension num_input. Hence num_input should be
// 1 greater than the maximum possible input value.
// Embed层的输入
optional uint32 input_dim = 2;
// 是否使用偏置项
optional bool bias_term = 3 [default = true]; // Whether to use a bias term
// 权重生成
optional FillerParameter weight_filler = 4; // The filler for the weight
// 偏置生成
optional FillerParameter bias_filler = 5; // The filler for the bias

}

// Message that stores parameters used by ExpLayer
// Exp层的参数,即指数层参数
message ExpParameter {
// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = exp(shift + scale * x).
// 指数层的计算是y = base ^ (shift + scale * x),下面分别是公式中的三个参数
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}


// Message that stores parameters used by FlattenLayer
// Flatten层的参数,主要是按某个轴展开(平铺),mnist demo的mnist_autoencode就使用了Flatten层
message FlattenParameter {
// The first axis to flatten: all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
// 从哪一层开始展开
optional int32 axis = 1 [default = 1];

// The last axis to flatten: all following axes are retained in the output.
// May be negative to index from the end (e.g., the default -1 for the last
// axis).
// 展开到哪一层结束
optional int32 end_axis = 2 [default = -1];
}

// Message that stores parameters used by HDF5DataLayer
// HDF5数据层的参数
message HDF5DataParameter {
// Specify the data source.
// HDF5层输入数据的数据源
optional string source = 1;
// Specify the batch size.
// 训练的batch_size
optional uint32 batch_size = 2;

// Specify whether to shuffle the data.
// If shuffle == true, the ordering of the HDF5 files is shuffled,
// and the ordering of data within any given HDF5 file is shuffled,
// but data between different files are not interleaved; all of a file's
// data are output (in a random order) before moving onto another file.
// 是否对HDF5的输入数据进行shuffle
optional bool shuffle = 3 [default = false];
}

// HDF5输出层参数
message HDF5OutputParameter {
// 输出的HDF5文件的文件名
optional string file_name = 1;
}

// HingeLoss层参数
message HingeLossParameter {
enum Norm {
L1 = 1;
L2 = 2;
}
// Specify the Norm to use L1 or L2
// 指定HingeLoss的类型
optional Norm norm = 1 [default = L1];
}


// ImageData层参数,网络中直接输入原图
message ImageDataParameter {
// Specify the data source.
// 描述图像路径及标签的文件
optional string source = 1;
// Specify the batch size.
// 训练的batch size
optional uint32 batch_size = 4 [default = 1];
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
// rand_skip跳过指定的数据点,避免异步的sgd从同一个数据点开始,与Data层中是一样的
optional uint32 rand_skip = 7 [default = 0];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
// 是否对图像顺序进行shuffle
optional bool shuffle = 8 [default = false];
// It will also resize images if new_height or new_width are not zero.
// 图像resize的高度
optional uint32 new_height = 9 [default = 0];
// 图像resize的宽度
optional uint32 new_width = 10 [default = 0];
// Specify if the images are color or gray
// 指定图像彩色图像还是灰度图像,默认彩色
optional bool is_color = 11 [default = true];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
// 已废弃。参考TransformationParameter中的scale
optional float scale = 2 [default = 1];
// 指定均值文件
optional string mean_file = 3;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
// 已废弃。参考TransformationParameter中的crop_size
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
// 已废弃,参考TransformationParameter的mirror。
optional bool mirror = 6 [default = false];
// 不太清楚root_folder具体是什么
optional string root_folder = 12 [default = ""];
}

// 信息增益损失层参数
message InfogainLossParameter {
// Specify the infogain matrix source.
// 指定存储信息增益矩阵的源文件
optional string source = 1;
}

// InnerProduct层的参数
message InnerProductParameter {
// InnerProduct层的输出
optional uint32 num_output = 1; // The number of outputs for the layer
// 是否有偏置项
optional bool bias_term = 2 [default = true]; // whether to have bias terms
// 权重初始化,随机生成
optional FillerParameter weight_filler = 3; // The filler for the weight
// 偏置初始化,随机生成
optional FillerParameter bias_filler = 4; // The filler for the bias

// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
// 从某一维度开始进行内积计算,前面的维度保留
optional int32 axis = 5 [default = 1];
// Specify whether to transpose the weight matrix or not.
// If transpose == true, any operations will be performed on the transpose
// of the weight matrix. The weight matrix itself is not going to be transposed
// but rather the transfer flag of operations will be toggled accordingly.
// 是否对权重矩阵进行转置
optional bool transpose = 6 [default = false];
}

// Input参数,caffe网络部署时会用到
message InputParameter {
// This layer produces N >= 1 top blob(s) to be assigned manually.
// Define N shapes to set a shape for each top.
// Define 1 shape to set the same shape for every top.
// Define no shape to defer to reshaping manually.
// 输入数据的shape
repeated BlobShape shape = 1;
}

// Message that stores parameters used by LogLayer
// Log层参数,对数据进行Log运算
message LogParameter {
// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = ln(shift + scale * x) = log_e(shift + scale * x)
// Log层计算公式为y = log_base(shift + scale * x),下面分别是公式中的三个参数
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}

// Message that stores parameters used by LRNLayer
// LRN层的参数,局部归一化,AlexNet中的LRN
message LRNParameter {
// 如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
optional uint32 local_size = 1 [default = 5];
// 归一化公式中的参数
optional float alpha = 2 [default = 1.];
optional float beta = 3 [default = 0.75];
enum NormRegion {
ACROSS_CHANNELS = 0;
WITHIN_CHANNEL = 1;
}
// 归一化的区域,分为通道内和跨通道两种
optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];
optional float k = 5 [default = 1.];
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 与前面的engine是一样的
optional Engine engine = 6 [default = DEFAULT];
}

// 内存数据层参数
message MemoryDataParameter {
// 训练的batch_size
optional uint32 batch_size = 1;
// 图像通道数
optional uint32 channels = 2;
// 图像高度
optional uint32 height = 3;
// 图像宽度
optional uint32 width = 4;
}

// mean-variance normalization层参数
message MVNParameter {
// This parameter can be set to false to normalize mean only
// 是否对方差进行归一化
optional bool normalize_variance = 1 [default = true];

// This parameter can be set to true to perform DNN-like MVN
// 是否进行跨通道的MVN
optional bool across_channels = 2 [default = false];

// Epsilon for not dividing by zero while normalizing variance
// 避免除数为0,与前面的一样
optional float eps = 3 [default = 1e-9];
}

// 参数层参数
message ParameterParameter {
// 用户自己定义的shape
optional BlobShape shape = 1;
}

// 池化层参数
message PoolingParameter {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
// 池化的方式
optional PoolMethod pool = 1 [default = MAX]; // The pooling method
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in height and width or as Y, X pairs.
// padding的大小
optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
// padding的高度
optional uint32 pad_h = 9 [default = 0]; // The padding height
// padding的宽度
optional uint32 pad_w = 10 [default = 0]; // The padding width
// 池化的核大小
optional uint32 kernel_size = 2; // The kernel size (square)
// 核高度
optional uint32 kernel_h = 5; // The kernel height
// 核宽度
optional uint32 kernel_w = 6; // The kernel width
// 池化的步长
optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
// 步长的高度
optional uint32 stride_h = 7; // The stride height
// 步长的宽度
optional uint32 stride_w = 8; // The stride width
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 执行池化操作的类型,与前面的一样
optional Engine engine = 11 [default = DEFAULT];
// If global_pooling then it will pool over the size of the bottom by doing
// kernel_h = bottom->height and kernel_w = bottom->width
// global_pooling是对多个通道进行pooling,例如从三通道pooling为单通道
optional bool global_pooling = 12 [default = false];
}

// Power层参数
message PowerParameter {
// PowerLayer computes outputs y = (shift + scale * x) ^ power.
// Power的计算公式为y = (shift + scale * x) ^ power,下面是公式中的参数
optional float power = 1 [default = 1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}

// python layer参数,在faster rcnn中有应用
message PythonParameter {
// python模块名称
optional string module = 1;
// python模块中层的名字,即类名
optional string layer = 2;
// This value is set to the attribute `param_str` of the `PythonLayer` object
// in Python before calling the `setup()` method. This could be a number,
// string, dictionary in Python dict format, JSON, etc. You may parse this
// string in `setup` method and use it in `forward` and `backward`.
// 可以用来设置参数,key-value形式,可以参考faster rcnn中模型的train.prototxt
optional string param_str = 3 [default = ''];
// Whether this PythonLayer is shared among worker solvers during data parallelism.
// If true, each worker solver sequentially run forward from this layer.
// This value should be set true if you are using it as a data layer.
// 是否需要在并行时共享layer
optional bool share_in_parallel = 4 [default = false];
}


// Message that stores parameters used by RecurrentLayer
// Recurrent层参数
message RecurrentParameter {
// The dimension of the output (and usually hidden state) representation --
// must be explicitly set to non-zero.
// Recurrent层的输出——必须非零
optional uint32 num_output = 1 [default = 0];
// 权重初始化,随机生成初始化
optional FillerParameter weight_filler = 2; // The filler for the weight
// 偏置初始化,随机生成
optional FillerParameter bias_filler = 3; // The filler for the bias

// Whether to enable displaying debug_info in the unrolled recurrent net.
// 是否输出调试信息
optional bool debug_info = 4 [default = false];

// Whether to add as additional inputs (bottoms) the initial hidden state
// blobs, and add as additional outputs (tops) the final timestep hidden state
// blobs. The number of additional bottom/top blobs required depends on the
// recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
// 是否添加额外的输入
optional bool expose_hidden = 5 [default = false];
}

// Message that stores parameters used by ReductionLayer
// Reduction层参数
message ReductionParameter {
enum ReductionOp {
SUM = 1;
ASUM = 2;
SUMSQ = 3;
MEAN = 4;
}
// 通过reduction操作来将数据减少到一维,可以通过上面的四种方式
optional ReductionOp operation = 1 [default = SUM]; // reduction operation

// The first axis to reduce to a scalar -- may be negative to index from the
// end (e.g., -1 for the last axis).
// (Currently, only reduction along ALL "tail" axes is supported; reduction
// of axis M through N, where N < num_axes - 1, is unsupported.)
// Suppose we have an n-axis bottom Blob with shape:
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
// If axis == m, the output Blob will have shape
// (d0, d1, d2, ..., d(m-1)),
// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
// times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
// If axis == 0 (the default), the output Blob always has the empty shape
// (count 1), performing reduction across the entire input --
// often useful for creating new loss functions.
// 在哪个轴上执行reduction操作
optional int32 axis = 2 [default = 0];
// 输出系数
optional float coeff = 3 [default = 1.0]; // coefficient for output
}

// Message that stores parameters used by ReLULayer
// ReLU层参数
message ReLUParameter {
// Allow non-zero slope for negative inputs to speed up optimization
// Described in:
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
// improve neural network acoustic models. In ICML Workshop on Deep Learning
// for Audio, Speech, and Language Processing.
// ReLUU操作的阈值
optional float negative_slope = 1 [default = 0];
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 执行ReLU操作的类型,与前面的一样
optional Engine engine = 2 [default = DEFAULT];
}

// Reshape层参数,与numpy中的Reshape作用是一样的
message ReshapeParameter {
// Specify the output dimensions. If some of the dimensions are set to 0,
// the corresponding dimension from the bottom layer is used (unchanged).
// Exactly one dimension may be set to -1, in which case its value is
// inferred from the count of the bottom blob and the remaining dimensions.
// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
//
// layer {
// type: "Reshape" bottom: "input" top: "output"
// reshape_param { ... }
// }
//
// If "input" is 2D with shape 2 x 8, then the following reshape_param
// specifications are all equivalent, producing a 3D blob "output" with shape
// 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }
// reshape_param { shape { dim: 0 dim:-1 dim: 4 } }
// reshape之后输出的维度
optional BlobShape shape = 1;

// axis and num_axes control the portion of the bottom blob's shape that are
// replaced by (included in) the reshape. By default (axis == 0 and
// num_axes == -1), the entire bottom blob shape is included in the reshape,
// and hence the shape field must specify the entire output shape.
//
// axis may be non-zero to retain some portion of the beginning of the input
// shape (and may be negative to index from the end; e.g., -1 to begin the
// reshape after the last axis, including nothing in the reshape,
// -2 to include only the last axis, etc.).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are all equivalent,
// producing a blob "output" with shape 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }
//
// num_axes specifies the extent of the reshape.
// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
// input axes in the range [axis, axis+num_axes].
// num_axes may also be -1, the default, to include all remaining axes
// (starting from axis).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are equivalent,
// producing a blob "output" with shape 1 x 2 x 8.
//
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }
// reshape_param { shape { dim: 1 } num_axes: 0 }
//
// On the other hand, these would produce output blob shape 2 x 1 x 8:
//
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }

optional int32 axis = 2 [default = 0];
optional int32 num_axes = 3 [default = -1];
}

// Scale层参数,与batch norm layer配合使用,可参考Resnet结构
message ScaleParameter {
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar multiplier.
optional int32 axis = 1 [default = 1];

// (num_axes is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the scale
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
optional int32 num_axes = 2 [default = 1];

// (filler is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer.)
// The initialization for the learned scale parameter.
// Default is the unit (1) initialization, resulting in the ScaleLayer
// initially performing the identity operation.
optional FillerParameter filler = 3;

// Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
// may be more efficient). Initialized with bias_filler (defaults to 0).
// 是否使用偏置项
optional bool bias_term = 4 [default = false];
// 偏置项初始化
optional FillerParameter bias_filler = 5;
}

// Sigmoid层参数
message SigmoidParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 使用哪种sigmoid实现
optional Engine engine = 1 [default = DEFAULT];
}

// Slice层参数
message SliceParameter {
// The axis along which to slice -- may be negative to index from the end
// (e.g., -1 for the last axis).
// By default, SliceLayer concatenates blobs along the "channels" axis (1).
// 在哪个维度上进行拆分
optional int32 axis = 3 [default = 1];
// 指定拆分点
repeated uint32 slice_point = 2;

// DEPRECATED: alias for "axis" -- does not support negative indexing.
// 已废弃。
optional uint32 slice_dim = 1 [default = 1];
}

// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
// Softmax层参数
message SoftmaxParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 使用哪种softmax实现
optional Engine engine = 1 [default = DEFAULT];

// The axis along which to perform the softmax -- may be negative to index
// from the end (e.g., -1 for the last axis).
// Any other axes will be evaluated as independent softmaxes.
// 在哪个维度上进行softmax
optional int32 axis = 2 [default = 1];
}

// TanH层参数
message TanHParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 执行tanh激活函数的类型
optional Engine engine = 1 [default = DEFAULT];
}

// Message that stores parameters used by TileLayer
// Tile层参数,扩大某一维度
message TileParameter {
// The index of the axis to tile.
// 扩大哪个维度
optional int32 axis = 1 [default = 1];

// The number of copies (tiles) of the blob to output.
// 创建多少个副本
optional int32 tiles = 2;
}

// Message that stores parameters used by ThresholdLayer
// Threshold层参数,主要用来测试输入是否超过阈值
message ThresholdParameter {
// 设置阈值
optional float threshold = 1 [default = 0]; // Strictly positive values
}

// WindowData层参数
message WindowDataParameter {
// Specify the data source.
// 指定数据源
optional string source = 1;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
// 是否归一化
optional float scale = 2 [default = 1];
// 图像均值文件
optional string mean_file = 3;
// Specify the batch size.
// 训练的batch_size
optional uint32 batch_size = 4;
// Specify if we would like to randomly crop an image.
// 是否随机crop
optional uint32 crop_size = 5 [default = 0];
// Specify if we want to randomly mirror data.
// 是否随机mirror
optional bool mirror = 6 [default = false];
// Foreground (object) overlap threshold
// 前景重叠阈值
optional float fg_threshold = 7 [default = 0.5];
// Background (non-object) overlap threshold
// 背景重叠阈值
optional float bg_threshold = 8 [default = 0.5];
// Fraction of batch that should be foreground objects
// 前景比例
optional float fg_fraction = 9 [default = 0.25];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
// 是否padding
optional uint32 context_pad = 10 [default = 0];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
// crop的方式
optional string crop_mode = 11 [default = "warp"];
// cache_images: will load all images in memory for faster access
// 是否缓存图像,即将图像都转入内存
optional bool cache_images = 12 [default = false];
// append root_folder to locate images
// 图像文件的根目录
optional string root_folder = 13 [default = ""];
}

// SPP层参数,SPP是spatial pyramid pooling,空间金字塔池化,具体可参考何凯明论文Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
message SPPParameter {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
// 空间金字塔高度
optional uint32 pyramid_height = 1;
// 池化方法
optional PoolMethod pool = 2 [default = MAX]; // The pooling method
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
// 执行SPP的方式
optional Engine engine = 6 [default = DEFAULT];
}

// DEPRECATED: use LayerParameter.
// 已废弃,使用LayerParameter。
message V1LayerParameter {
repeated string bottom = 2;
repeated string top = 3;
optional string name = 4;
repeated NetStateRule include = 32;
repeated NetStateRule exclude = 33;
enum LayerType {
NONE = 0;
ABSVAL = 35;
ACCURACY = 1;
ARGMAX = 30;
BNLL = 2;
CONCAT = 3;
CONTRASTIVE_LOSS = 37;
CONVOLUTION = 4;
DATA = 5;
DECONVOLUTION = 39;
DROPOUT = 6;
DUMMY_DATA = 32;
EUCLIDEAN_LOSS = 7;
ELTWISE = 25;
EXP = 38;
FLATTEN = 8;
HDF5_DATA = 9;
HDF5_OUTPUT = 10;
HINGE_LOSS = 28;
IM2COL = 11;
IMAGE_DATA = 12;
INFOGAIN_LOSS = 13;
INNER_PRODUCT = 14;
LRN = 15;
MEMORY_DATA = 29;
MULTINOMIAL_LOGISTIC_LOSS = 16;
MVN = 34;
POOLING = 17;
POWER = 26;
RELU = 18;
SIGMOID = 19;
SIGMOID_CROSS_ENTROPY_LOSS = 27;
SILENCE = 36;
SOFTMAX = 20;
SOFTMAX_LOSS = 21;
SPLIT = 22;
SLICE = 33;
TANH = 23;
WINDOW_DATA = 24;
THRESHOLD = 31;
}
optional LayerType type = 5;
repeated BlobProto blobs = 6;
repeated string param = 1001;
repeated DimCheckMode blob_share_mode = 1002;
enum DimCheckMode {
STRICT = 0;
PERMISSIVE = 1;
}
repeated float blobs_lr = 7;
repeated float weight_decay = 8;
repeated float loss_weight = 35;
optional AccuracyParameter accuracy_param = 27;
optional ArgMaxParameter argmax_param = 23;
optional ConcatParameter concat_param = 9;
optional ContrastiveLossParameter contrastive_loss_param = 40;
optional ConvolutionParameter convolution_param = 10;
optional DataParameter data_param = 11;
optional DropoutParameter dropout_param = 12;
optional DummyDataParameter dummy_data_param = 26;
optional EltwiseParameter eltwise_param = 24;
optional ExpParameter exp_param = 41;
optional HDF5DataParameter hdf5_data_param = 13;
optional HDF5OutputParameter hdf5_output_param = 14;
optional HingeLossParameter hinge_loss_param = 29;
optional ImageDataParameter image_data_param = 15;
optional InfogainLossParameter infogain_loss_param = 16;
optional InnerProductParameter inner_product_param = 17;
optional LRNParameter lrn_param = 18;
optional MemoryDataParameter memory_data_param = 22;
optional MVNParameter mvn_param = 34;
optional PoolingParameter pooling_param = 19;
optional PowerParameter power_param = 21;
optional ReLUParameter relu_param = 30;
optional SigmoidParameter sigmoid_param = 38;
optional SoftmaxParameter softmax_param = 39;
optional SliceParameter slice_param = 31;
optional TanHParameter tanh_param = 37;
optional ThresholdParameter threshold_param = 25;
optional WindowDataParameter window_data_param = 20;
optional TransformationParameter transform_param = 36;
optional LossParameter loss_param = 42;
optional V0LayerParameter layer = 1;
}

// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
// in Caffe. We keep this message type around for legacy support.
// 已废弃。
message V0LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the string to specify the layer type

// Parameters to specify layers with inner products.
optional uint32 num_output = 3; // The number of outputs for the layer
optional bool biasterm = 4 [default = true]; // whether to have bias terms
optional FillerParameter weight_filler = 5; // The filler for the weight
optional FillerParameter bias_filler = 6; // The filler for the bias

optional uint32 pad = 7 [default = 0]; // The padding size
optional uint32 kernelsize = 8; // The kernel size
optional uint32 group = 9 [default = 1]; // The group size for group conv
optional uint32 stride = 10 [default = 1]; // The stride
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional PoolMethod pool = 11 [default = MAX]; // The pooling method
optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio

optional uint32 local_size = 13 [default = 5]; // for local response norm
optional float alpha = 14 [default = 1.]; // for local response norm
optional float beta = 15 [default = 0.75]; // for local response norm
optional float k = 22 [default = 1.];

// For data layers, specify the data source
optional string source = 16;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 17 [default = 1];
optional string meanfile = 18;
// For data layers, specify the batch size.
optional uint32 batchsize = 19;
// For data layers, specify if we would like to randomly crop an image.
optional uint32 cropsize = 20 [default = 0];
// For data layers, specify if we want to randomly mirror data.
optional bool mirror = 21 [default = false];

// The blobs containing the numeric parameters of the layer
repeated BlobProto blobs = 50;
// The ratio that is multiplied on the global learning rate. If you want to
// set the learning ratio for one blob, you need to set it for all blobs.
repeated float blobs_lr = 51;
// The weight decay that is multiplied on the global weight decay.
repeated float weight_decay = 52;

// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional uint32 rand_skip = 53 [default = 0];

// Fields related to detection (det_*)
// foreground (object) overlap threshold
optional float det_fg_threshold = 54 [default = 0.5];
// background (non-object) overlap threshold
optional float det_bg_threshold = 55 [default = 0.5];
// Fraction of batch that should be foreground objects
optional float det_fg_fraction = 56 [default = 0.25];

// optional bool OBSOLETE_can_clobber = 57 [default = true];

// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional uint32 det_context_pad = 58 [default = 0];

// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional string det_crop_mode = 59 [default = "warp"];

// For ReshapeLayer, one needs to specify the new dimensions.
optional int32 new_num = 60 [default = 0];
optional int32 new_channels = 61 [default = 0];
optional int32 new_height = 62 [default = 0];
optional int32 new_width = 63 [default = 0];

// Whether or not ImageLayer should shuffle the list of files at every epoch.
// It will also resize images if new_height or new_width are not zero.
optional bool shuffle_images = 64 [default = false];

// For ConcatLayer, one needs to specify the dimension for concatenation, and
// the other dimensions must be the same for all the bottom blobs.
// By default it will concatenate blobs along the channels dimension.
optional uint32 concat_dim = 65 [default = 1];

optional HDF5OutputParameter hdf5_output_param = 1001;
}

// PReLU层参数,ReLU的进化版本
message PReLUParameter {
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
// Surpassing Human-Level Performance on ImageNet Classification, 2015.

// Initial value of a_i. Default is a_i=0.25 for all i.
// 参数初始化
optional FillerParameter filler = 1;
// Whether or not slope parameters are shared across channels.
// 是否在各通道共享参数
optional bool channel_shared = 2 [default = false];
}
如果有收获,可以请我喝杯咖啡!