文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
注:模型的训练、测试、部署都可以通过Docker环境完成,环境问题会更少。
1. CUDA 8.0安装
- Config env variables
1 | # CUDA PATH |
- CUDA check
$ nvcc –version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61
2. cuDNN安装
1 | # unzip cudnn |
3. NCCL安装
1 | # clone nccl |
4. Caffe安装
- Install dependencies
1 | sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel gflags-devel glog-devel lmdb-devel atlas-devel |
- Installation
参考http://blog.csdn.net/quincuntial/article/details/53494949
- Caffe Test
参考http://blog.csdn.net/quincuntial/article/details/53468000
5. Tensorflow安装
1 | sudo pip install tensorflow-gpu |
6. PyTorch安装
1 | pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl |
7. Docker安装
1 | # Install docker |
8. Nvidia-Docker安装
1 | # Install nvida-docker |